A Physical-layer Attack Detection Method Using Continuous Secured Side Information
نویسنده
چکیده
This paper focuses on Byzantine attack detection for Gaussian two-hop one-way relay network, where an amplify-and-forward relay may perform Byzantine attacks by forwarding altered symbols to the destination. For facilitating attack detection, we utilize the openness of wireless medium to make the destination observe some secured signals that are not attacked. Then, a detection scheme is developed for the destination by using its secured observations to statistic check other observations from the relay. On the other hand, notice the Gaussian channel is continuous, which allows the possible Byzantine attacks to be conducted within continuous alphabet. The exiting work on discrete channel may not be available for investigating the detectability of the proposed scheme. The main contribution of this paper is to prove that if and only if the wireless relay network satisfies a non-manipulable channel condition, the proposed detection schemes can detect arbitrary attacks that allows the stochastic distributions of altered symbols to vary arbitrarily and depend on each other. No pre-shared secret or secret transmission is needed for the detection. Furthermore, we also prove that the relay network is non-manipulable as long as all channel coefficients are non-zero, which is not essential restrict for many practical systems.
منابع مشابه
F-STONE: A Fast Real-Time DDOS Attack Detection Method Using an Improved Historical Memory Management
Distributed Denial of Service (DDoS) is a common attack in recent years that can deplete the bandwidth of victim nodes by flooding packets. Based on the type and quantity of traffic used for the attack and the exploited vulnerability of the target, DDoS attacks are grouped into three categories as Volumetric attacks, Protocol attacks and Application attacks. The volumetric attack, which the pro...
متن کاملReal-Time intrusion detection alert correlation and attack scenario extraction based on the prerequisite consequence approach
Alert correlation systems attempt to discover the relations among alerts produced by one or more intrusion detection systems to determine the attack scenarios and their main motivations. In this paper a new IDS alert correlation method is proposed that can be used to detect attack scenarios in real-time. The proposed method is based on a causal approach due to the strength of causal methods in ...
متن کاملAnomaly-based Web Attack Detection: The Application of Deep Neural Network Seq2Seq With Attention Mechanism
Today, the use of the Internet and Internet sites has been an integrated part of the people’s lives, and most activities and important data are in the Internet websites. Thus, attempts to intrude into these websites have grown exponentially. Intrusion detection systems (IDS) of web attacks are an approach to protect users. But, these systems are suffering from such drawbacks as low accuracy in ...
متن کاملA New Intrusion Detection System to deal with Black Hole Attacks in Mobile Ad Hoc Networks
By extending wireless networks and because of their different nature, some attacks appear in these networks which did not exist in wired networks. Security is a serious challenge for actual implementation in wireless networks. Due to lack of the fixed infrastructure and also because of security holes in routing protocols in mobile ad hoc networks, these networks are not protected against attack...
متن کاملPUF – Physical Unclonable Functions
from historical banking and telecommunication applications to electronic passports, electronic IDs, anti-counterfeiting devices, smartgrid applications, and more. The security requirements for most of these applications are crucial and evolving. In addition, more and more sophisticated attacks are being developed every day. As a result, design of Smart Card ICs is a growing challenge. This pape...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- CoRR
دوره abs/1701.01590 شماره
صفحات -
تاریخ انتشار 2017